mirror of
https://github.com/SunZhimin2021/AIPentest.git
synced 2025-06-20 18:00:18 +00:00
249 lines
9.1 KiB
Python
249 lines
9.1 KiB
Python
import pandas as pd
|
||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||
from transformers import pipeline
|
||
import os
|
||
import time
|
||
import json
|
||
from datetime import datetime
|
||
|
||
def load_checkpoint(checkpoint_file):
|
||
"""加载断点信息"""
|
||
if os.path.exists(checkpoint_file):
|
||
try:
|
||
with open(checkpoint_file, 'r', encoding='utf-8') as f:
|
||
checkpoint = json.load(f)
|
||
print(f"发现断点文件,从第 {checkpoint['last_processed'] + 1} 条记录开始继续处理")
|
||
return checkpoint
|
||
except Exception as e:
|
||
print(f"读取断点文件失败: {e}")
|
||
return None
|
||
return None
|
||
|
||
def save_checkpoint(checkpoint_file, last_processed, total_records):
|
||
"""保存断点信息"""
|
||
checkpoint = {
|
||
'last_processed': last_processed,
|
||
'total_records': total_records,
|
||
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
||
}
|
||
try:
|
||
with open(checkpoint_file, 'w', encoding='utf-8') as f:
|
||
json.dump(checkpoint, f, ensure_ascii=False, indent=2)
|
||
except Exception as e:
|
||
print(f"保存断点文件失败: {e}")
|
||
|
||
def save_batch_results(results, output_file, mode='w'):
|
||
"""保存批量结果到CSV"""
|
||
try:
|
||
results_df = pd.DataFrame(results)
|
||
if mode == 'w':
|
||
results_df.to_csv(output_file, index=False, encoding='utf-8')
|
||
else: # append mode
|
||
results_df.to_csv(output_file, mode='a', header=False, index=False, encoding='utf-8')
|
||
return True
|
||
except Exception as e:
|
||
print(f"保存结果失败: {e}")
|
||
return False
|
||
|
||
def main():
|
||
# 设置文件路径,可使用ProtectAI,deepset,metaguard86M
|
||
local_path = "./models/metaguard86M"
|
||
input_file = "deepset_prompt_injection_data.csv"
|
||
output_file = "./result/deepset_86M_results.csv"
|
||
checkpoint_file = "86M_checkpoint.json"
|
||
batch_size = 10 # 每批处理的记录数
|
||
|
||
# 检查模型路径是否存在
|
||
if not os.path.exists(local_path):
|
||
print(f"错误: 模型路径 {local_path} 不存在")
|
||
return
|
||
|
||
# 加载断点信息
|
||
checkpoint = load_checkpoint(checkpoint_file)
|
||
start_idx = 0
|
||
if checkpoint:
|
||
start_idx = checkpoint['last_processed'] + 1
|
||
|
||
# 加载模型和分词器
|
||
print("正在加载模型和分词器...")
|
||
try:
|
||
tokenizer = AutoTokenizer.from_pretrained(local_path)
|
||
model = AutoModelForSequenceClassification.from_pretrained(local_path)
|
||
|
||
# 创建分类器
|
||
classifier = pipeline(
|
||
"text-classification",
|
||
model=model,
|
||
tokenizer=tokenizer,
|
||
truncation=True,
|
||
max_length=512,
|
||
)
|
||
print("模型加载成功!")
|
||
except Exception as e:
|
||
print(f"模型加载失败: {e}")
|
||
return
|
||
|
||
# 读取CSV文件
|
||
if not os.path.exists(input_file):
|
||
print(f"错误: 输入文件 {input_file} 不存在")
|
||
return
|
||
|
||
try:
|
||
print(f"正在读取 {input_file}...")
|
||
df = pd.read_csv(input_file)
|
||
print(f"成功读取 {len(df)} 行数据")
|
||
|
||
# 检查必要的列是否存在
|
||
if 'text' not in df.columns:
|
||
print("错误: CSV文件中缺少 'text' 列")
|
||
return
|
||
|
||
# 如果没有label列,创建一个空的
|
||
if 'label' not in df.columns:
|
||
df['label'] = ''
|
||
|
||
except Exception as e:
|
||
print(f"读取CSV文件失败: {e}")
|
||
return
|
||
|
||
# 如果是断点续传,检查总记录数是否一致
|
||
if checkpoint and checkpoint['total_records'] != len(df):
|
||
print(f"警告: 当前文件记录数({len(df)})与断点记录数({checkpoint['total_records']})不一致")
|
||
response = input("是否要重新开始处理? (y/n): ")
|
||
if response.lower() == 'y':
|
||
start_idx = 0
|
||
if os.path.exists(output_file):
|
||
os.remove(output_file)
|
||
|
||
# 如果从头开始,清空之前的输出文件
|
||
if start_idx == 0 and os.path.exists(output_file):
|
||
os.remove(output_file)
|
||
print("已清空之前的输出文件")
|
||
|
||
# 创建结果列表
|
||
batch_results = []
|
||
total_processed = start_idx
|
||
|
||
# 记录分类开始时间
|
||
start_time = time.time()
|
||
start_datetime = datetime.now()
|
||
print(f"分类开始时间: {start_datetime.strftime('%Y-%m-%d %H:%M:%S')}")
|
||
|
||
if start_idx > 0:
|
||
print(f"从第 {start_idx + 1} 条记录开始继续处理...")
|
||
else:
|
||
print("开始分类处理...")
|
||
|
||
try:
|
||
for idx in range(start_idx, len(df)):
|
||
row = df.iloc[idx]
|
||
text = str(row['text']) # 确保是字符串类型
|
||
source_label = row.get('label', '') # 获取原始标签,如果不存在则为空
|
||
|
||
try:
|
||
# 进行分类
|
||
prediction = classifier(text)
|
||
|
||
# 提取预测结果
|
||
predicted_label = prediction[0]['label']
|
||
predicted_score = prediction[0]['score']
|
||
|
||
# 添加到批量结果列表
|
||
batch_results.append({
|
||
'text': text,
|
||
'source_label': source_label,
|
||
'classified_label': predicted_label,
|
||
'classified_score': predicted_score
|
||
})
|
||
|
||
total_processed = idx
|
||
|
||
# 每处理batch_size条记录或到达最后一条记录时保存
|
||
if len(batch_results) >= batch_size or idx == len(df) - 1:
|
||
# 保存批量结果
|
||
mode = 'w' if idx < batch_size and start_idx == 0 else 'a'
|
||
if save_batch_results(batch_results, output_file, mode):
|
||
print(f"已处理并保存 {idx + 1}/{len(df)} 条数据")
|
||
|
||
# 保存断点
|
||
save_checkpoint(checkpoint_file, idx, len(df))
|
||
|
||
# 清空批量结果列表
|
||
batch_results = []
|
||
else:
|
||
print(f"保存第 {idx + 1} 批数据失败,停止处理")
|
||
break
|
||
|
||
# 打印进度(每10条显示一次)
|
||
elif (idx + 1) % 10 == 0:
|
||
print(f"已处理 {idx + 1}/{len(df)} 条数据")
|
||
|
||
except Exception as e:
|
||
print(f"处理第 {idx + 1} 行时出错: {e}")
|
||
# 添加错误记录
|
||
batch_results.append({
|
||
'text': text,
|
||
'source_label': source_label,
|
||
'classified_label': 'ERROR',
|
||
'classified_score': 0.0
|
||
})
|
||
total_processed = idx
|
||
|
||
except KeyboardInterrupt:
|
||
print(f"\n用户中断处理,已处理到第 {total_processed + 1} 条记录")
|
||
# 保存剩余的批量结果
|
||
if batch_results:
|
||
mode = 'a' if total_processed > 0 else 'w'
|
||
save_batch_results(batch_results, output_file, mode)
|
||
# 保存断点
|
||
save_checkpoint(checkpoint_file, total_processed, len(df))
|
||
return
|
||
|
||
except Exception as e:
|
||
print(f"\n处理过程中发生错误: {e}")
|
||
# 保存剩余的批量结果
|
||
if batch_results:
|
||
mode = 'a' if total_processed > 0 else 'w'
|
||
save_batch_results(batch_results, output_file, mode)
|
||
# 保存断点
|
||
save_checkpoint(checkpoint_file, total_processed, len(df))
|
||
return
|
||
|
||
# 记录分类结束时间并计算性能统计
|
||
end_time = time.time()
|
||
end_datetime = datetime.now()
|
||
total_time = end_time - start_time
|
||
processed_count = total_processed - start_idx + 1
|
||
|
||
print(f"\n分类结束时间: {end_datetime.strftime('%Y-%m-%d %H:%M:%S')}")
|
||
print(f"本次处理耗时: {total_time:.2f} 秒")
|
||
print(f"本次处理记录数: {processed_count}")
|
||
if processed_count > 0:
|
||
print(f"平均每条数据耗时: {total_time/processed_count:.3f} 秒")
|
||
print(f"处理速度: {processed_count/total_time:.2f} 条/秒")
|
||
|
||
# 显示最终统计信息
|
||
try:
|
||
if os.path.exists(output_file):
|
||
results_df = pd.read_csv(output_file)
|
||
print(f"\n总共完成 {len(results_df)} 条记录的分类")
|
||
|
||
# 打印统计信息
|
||
print("\n分类结果统计:")
|
||
print(results_df['classified_label'].value_counts())
|
||
|
||
# 显示前几行结果作为示例
|
||
print(f"\n前5行结果预览:")
|
||
print(results_df.head())
|
||
|
||
# 如果全部完成,删除断点文件
|
||
if len(results_df) == len(df):
|
||
if os.path.exists(checkpoint_file):
|
||
os.remove(checkpoint_file)
|
||
print(f"\n所有记录处理完成,已删除断点文件")
|
||
|
||
except Exception as e:
|
||
print(f"读取最终结果失败: {e}")
|
||
|
||
if __name__ == "__main__":
|
||
main() |