"value":"In the Linux kernel, the following vulnerability has been resolved:\n\nparisc: Fix random data corruption from exception handler\n\nThe current exception handler implementation, which assists when accessing\nuser space memory, may exhibit random data corruption if the compiler decides\nto use a different register than the specified register %r29 (defined in\nASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another\nregister, the fault handler will nevertheless store -EFAULT into %r29 and thus\ntrash whatever this register is used for.\nLooking at the assembly I found that this happens sometimes in emulate_ldd().\n\nTo solve the issue, the easiest solution would be if it somehow is\npossible to tell the fault handler which register is used to hold the error\ncode. Using %0 or %1 in the inline assembly is not posssible as it will show\nup as e.g. %r29 (with the \"%r\" prefix), which the GNU assembler can not\nconvert to an integer.\n\nThis patch takes another, better and more flexible approach:\nWe extend the __ex_table (which is out of the execution path) by one 32-word.\nIn this word we tell the compiler to insert the assembler instruction\n\"or %r0,%r0,%reg\", where %reg references the register which the compiler\nchoosed for the error return code.\nIn case of an access failure, the fault handler finds the __ex_table entry and\ncan examine the opcode. The used register is encoded in the lowest 5 bits, and\nthe fault handler can then store -EFAULT into this register.\n\nSince we extend the __ex_table to 3 words we can't use the BUILDTIME_TABLE_SORT\nconfig option any longer."